High-Efficiency, Current-Mode, Inverting PWM Controller

Abstract

General Description MAX1846/MAX1847 high-efficiency PWM inverting controllers allow designers to implement compact, lownoise, negative-output DC-DC converters for telecom and networking applications. Both devices operate from +3 V to +16.5 V input and generate -2 V to -200 V output. To minimize switching noise, both devices feature a current-mode, constant-frequency PWM control scheme. The operating frequency can be set from 100 kHz to 500 kHz through a resistor. The MAX1846 is available in an ultra-compact 10-pin HMAX package. Operation at high frequency, compatibility with ceramic capacitors, and inverting topology without transformers allow for a compact design. Compatibility with electrolytic capacitors and flexibility to operate down to 100 kHz allow users to minimize the cost of external components. The high-current output drivers are designed to drive a P-channel MOSFET and allow the converter to deliver up to 30W. The MAX1847 features clock synchronization and shutdown functions. The MAX1847 can also be configured to operate as an inverting flyback controller with an N channel MOSFET and a transformer to deliver up to 70W. The MAX1847 is available in a 16 -pin QSOP package. Current-mode control simplifies compensation and provides good transient response. Accurate current-mode control and over current protection are achieved through low-side current sensing.

Applications
Cellular Base Stations
Networking Equipment
Optical Networking Equipment
SLIC Supplies
CO DSL Line Driver Supplies
Industrial Power Supplies
Automotive Electronic Power Supplies
Servers

Features
-90\% Efficiency

- +3.0V to +16.5V Input Range
- -2 V to -200V Output
- Drives High-Side P-Channel MOSFET
- 100kHz to 500 kHz Switching Frequency
- Current-Mode, PWM Control
- Internal Soft-Start
- Electrolytic or Ceramic Output Capacitor
- The MAX1847 also offers:

Synchronization to External Clock Shutdown
N-Channel Inverting Flyback Option
Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1846EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX1847EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

Typical Operating Circuit

Pin Configurations appear at end of data sheet.

High-Efficiency, Current-Mode, Inverting PWM Controller

ABSOLUTE MAXIMUM RATINGS

DN to GND	+20V
PGND to GND ...-0.3V to +0.3V	
VL to PGND for $\mathrm{V}_{\text {IN }} \leq 5.7 \mathrm{~V}$.......................-0.3V to (VIN +0.3 V)	
VL to PGND for VIN > 5.7V	-0.3V to +6V
EXT to PGND	.-0.3V to ($\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$)
REF, COMP to GND	..-0.3V to (VL + 0.3V)
CS, FB, FREQ, POL, SYNC-0.3V to +6V

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70	
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V \overline{S H D N}=V_{I N}=+12 V, S Y N C=G N D, P G N D=G N D, R F R E Q=147 \mathrm{k} \Omega \pm 1 \%, C V L=0.47 \mu F, C R E F=0.1 \mu F, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5} 5^{\circ} \mathbf{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PWM CONTROLLER					
Operating Input Voltage Range		3.0		16.5	V
UVLO Threshold	VIN rising		2.8	2.95	V
	$V_{\text {IN }}$ falling	2.6	2.74		
UVLO Hysteresis			60		mV
FB Threshold	No load	-12	0	12	mV
FB Input Current	$\mathrm{V}_{\mathrm{FB}}=-0.1 \mathrm{~V}$	-50	-6	50	nA
Load Regulation	CCOMP $=0.068 \mu \mathrm{~F}, \mathrm{~V}$ OUT $=-48 \mathrm{~V}$, Iout $=20 \mathrm{~mA}$ to 200 mA (Note 1)	-1		0	\%
Line Regulation	$\begin{aligned} & \text { CCOMP }=0.068 \mu \mathrm{~F}, \text { VOUT }=-48 \mathrm{~V}, \\ & \mathrm{~V} \text { IN }=+8 \mathrm{~V} \text { to }+16.5 \mathrm{~V}, \text { IOUT }=100 \mathrm{~mA} \end{aligned}$		0.04		\%
Current-Limit Threshold		85	100	115	mV
CS Input Current	CS = GND		10	20	$\mu \mathrm{A}$
Supply Current	$\mathrm{V}_{\mathrm{FB}}=-0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+3.0 \mathrm{~V}$ to +16.5 V		0.75	1.2	mA
Shutdown Supply Current	$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}$ IN $=+3.0 \mathrm{~V}$ to +16.5 V		10	25	$\mu \mathrm{A}$
REFERENCE AND VL REGULATOR					
REF Output Voltage	$I_{\text {REF }}=50 \mu \mathrm{~A}$	1.236	1.25	1.264	V
REF Load Regulation	IREF $=0$ to $500 \mu \mathrm{~A}$		-2	-15	mV
VL Output Voltage	$\mathrm{IVL}=100 \mu \mathrm{~A}$	3.85	4.25	4.65	V
VL Load Regulation	$\mathrm{IVL}=0.1 \mathrm{~mA}$ to 2.0 mA		-20	-60	mV

High-Efficiency, Current-Mode, Inverting PWM Controller

ELECTRICAL CHARACTERISTICS (continued)

$\left(V \overline{\text { SHDN }}=\mathrm{VIN}=+12 \mathrm{~V}, \mathrm{SYNC}=\mathrm{GND}, \mathrm{PGND}=\mathrm{GND}, \mathrm{R}_{\text {FREQ }}=147 \mathrm{k} \Omega \pm 1 \%, \mathrm{CVL}=0.47 \mu \mathrm{~F}, \mathrm{CREF}=0.1 \mu \mathrm{~F}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.)

OSCILLATOR					
Oscillator Frequency	RFREQ $=500 \mathrm{k} \Omega \pm 1 \%$	90	100	110	kHz
	RFREQ $=147 \mathrm{k} \Omega \pm 1 \%$	255	300	345	
	RFREQ $=76.8 \mathrm{k} \Omega \pm 1 \%$		500		
Maximum Duty Cycle	RFREQ $=500 \mathrm{k} \Omega \pm 1 \%$	93	96	97	\%
	RFREQ $=147 \mathrm{k} \Omega \pm 1 \%$	85	88	90	
	RFREQ $=76.8 \mathrm{kz} \pm 1 \%$		80		
SYNC Input Signal Duty-Cycle Range		7		93	\%
Minimum SYNC Input Logic Low Pulse Width			50	200	ns
SYNC Input Rise/Fall Time	(Note 2)			200	ns
SYNC Input Frequency Range		100		550	kHz
DIGITAL INPUTS					
POL, SYNC, SHDN Input High Voltage		2.0			V
POL, SYNC, $\overline{\text { SHDN }}$ Input Low Voltage				0.45	V
POL, SYNC Input Current	POL, SYNC = GND or VL		20	40	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Current	V $\overline{\text { SHDN }}=+5 \mathrm{~V}$ or GND	-12	-4	0	$\mu \mathrm{A}$
	VSHDN $=+16.5 \mathrm{~V}$		1.5	6	
SOFT-START					
Soft-Start Clock Cycles			1024		Cycles
Soft-Start Levels			64		
EXT OUTPUT					
EXT Sink/Source Current	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {EXT }}$ forced to +2.5 V		1		A
EXT On-Resistance	EXT high or low, tested with 100 mA load, V IN $=+5 \mathrm{~V}$		2	5	Ω
	EXT high or low, tested with 100 mA load, $\mathrm{V}_{\text {IN }}=+3 \mathrm{~V}$		5	10	

Note 1: Production test correlates to operating conditions.
Note 2: Guaranteed by design and characterization.

High-Efficiency, Current-Mode,
 Inverting PWM Controller

ELECTRICAL CHARACTERISTICS

$\left(V \overline{S H D N}=V_{I N}=+12 \mathrm{~V}, S Y N C=G N D, P G N D=G N D\right.$, RFREQ $=147 \mathrm{k} \Omega \pm 1 \%, C V L=0.47 \mu F, C_{R E F}=0.1 \mu \mathrm{~F}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 3)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
PWM CONTROLLER				
Operating Input Voltage Range		3.0	16.5	V
UVLO Threshold	VIN rising		2.95	V
	$V_{\text {IN }}$ falling	2.6		
FB Threshold	No load	-20	20	mV
FB Input Current	$\mathrm{V}_{\mathrm{FB}}=-0.1 \mathrm{~V}$	-50	50	nA
Load Regulation	CCOMP $=0.068 \mu \mathrm{~F}, \mathrm{~V}$ OUT $=-48 \mathrm{~V}$, lout $=20 \mathrm{~mA}$ to 200 mA (Note 1)	-2	0	\%
Current Limit Threshold		85	115	mV
CS Input Current	CS = GND		20	$\mu \mathrm{A}$
Supply Current	$\mathrm{V}_{\mathrm{FB}}=-0.1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=+3.0 \mathrm{~V}$ to +16.5 V		1.2	mA
Shutdown Supply Current	$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=+3.0 \mathrm{~V}$ to +16.5 V		25	$\mu \mathrm{A}$
REFERENCE AND VL REGULATOR				
REF Output Voltage	$\mathrm{I}_{\text {REF }}=50 \mu \mathrm{~A}$	1.225	1.275	V
REF Load Regulation	IREF $=0$ to $500 \mu \mathrm{~A}$		-15	mV
VL Output Voltage	$\mathrm{IVL}=100 \mu \mathrm{~A}$	3.85	4.65	V
VL Load Regulation	$\mathrm{IVL}=0.1 \mathrm{~mA}$ to 2.0 mA		-60	mV
OSCILLATOR				
Oscillator Frequency	RFREQ $=500 \mathrm{k} \Omega \pm 1 \%$	84	116	kHz
	RFREQ $=147 \mathrm{k} \Omega \pm 1 \%$	255	345	
Maximum Duty Cycle	RFREQ $=500 \mathrm{k} \Omega \pm 1 \%$	93	98	\%
	RFREQ $=147 \mathrm{k} \Omega \pm 1 \%$	84	93	
SYNC Input Signal Duty-Cycle Range		7	93	\%
Minimum SYNC Input Logic Low Pulse Width			200	ns
SYNC Input Rise/Fall Time	(Note 2)		200	ns
SYNC Input Frequency Range		100	550	kHz
DIGITAL INPUTS				
POL, SYNC, $\overline{\text { SHDN }}$ Input High Voltage		2.0		V
POL, SYNC, $\overline{\text { SHDN }}$ Input Low Voltage			0.45	V

High-Efficiency, Current-Mode, Inverting PWM Controller

ELECTRICAL CHARACTERISTICS (continued)

 unless otherwise noted.) (Note 3)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
POL, SYNC Input Current	POL, SYNC = GND or VL		40	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Current	V $\overline{\text { SHDN }}=+5 \mathrm{~V}$ or GND	-12	0	$\mu \mathrm{A}$
	V SHDN $=+16.5 \mathrm{~V}$		6	
EXT OUTPUT				
EXT On-Resistance	EXT high or low, IEXT $=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=+5 \mathrm{~V}$		7.5	Ω
	EXT high or low, IEXT $=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=+3 \mathrm{~V}$		12	

Note 3: Parameters to $-40^{\circ} \mathrm{C}$ are guaranteed by design and characterization.

Typical Operating Characteristics
(Circuit references are from Table 1 in the Main Application Circuits section, $C_{V L}=0.47 \mu \mathrm{~F}, \mathrm{CREF}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Efficiency, Current-Mode, Inverting PWM Controller

Typical Operating Characteristics (continued)

(Circuit references are from Table 1 in the Main Application Circuits section, $C V L=0.47 \mu F, C R E F=0.1 \mu F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High－Efficiency，Current－Mode， Inverting PWM Controller

Typical Operating Characteristics（continued）

（Circuit references are from Table 1 in the Main Application Circuits section， $\mathrm{CVL}=0.47 \mu \mathrm{~F}, \mathrm{CREF}=0.1 \mu \mathrm{~F}, \mathrm{TA}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

High-Efficiency, Current-Mode,
 Inverting PWM Controller

PIN		NAME	FUNCTION
MAX1846	MAX1847		
-	1	POL	Sets polarity of the EXT pin. Connect POL to GND to set EXT for use with an external PMOS high-side FET. Connect POL to VL to set EXT for use with an external NMOS lowside FET in transformer-based applications.
1	2	VL	VL Low-Dropout Regulator. Connect $0.47 \mu \mathrm{~F}$ ceramic capacitor from VL to GND.
2	3	FREQ	Oscillator Frequency Set Input. Connect a resistor (RFREQ) from FREQ to GND to set the internal oscillator frequency from $100 \mathrm{kHz}($ RFREQ $=500 \mathrm{k} \Omega$) to $500 \mathrm{kHz}($ RFREQ $=76.8 \mathrm{k} \Omega)$. RFREQ is still required if an external clock is used at SYNC. See Setting the Operating Frequency section.
3	4	COMP	Compensation Node for Error Amp/Integrator. Connect a series resistor/capacitor network from COMP to GND for loop compensation. See Design Procedure.
4	5	REF	1.25V Reference Output. REF can source up to $500 \mu \mathrm{~A}$. Bypass with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from REF to GND.
5	6	FB	Feedback Input. Connect FB to the center of a resistor-divider connected between the output and REF. The FB threshold is 0 .
-	7,9	N.C.	No Connection
-	8	$\overline{\text { SHDN }}$	Shutdown Control. Drive $\overline{\text { SHDN }}$ low to turn off the DC-DC controller. Drive high or connect to IN for normal operation.
6	10,11	GND	Analog Ground. Connect to PGND.
7	12	PGND	Negative Rail for EXT Driver and Negative Current-Sense Input. Connect to GND.
8	13	CS	Positive Current-Sense Input. Connect a current-sense resistor (RCS) between CS and
9	14	EXT	External MOSFET Gate-Driver Output. EXT swings from IN to PGND.
10	15	IN	Power-Supply Input
-	16	SYNC	Operating Frequency Synchronization Control. Drive SYNC low or connect to GND to set the internal oscillator frequency with RFREQ. Drive SYNC with a logic-level clock input signal to externally set the converter's operating frequency. DC-DC conversion cycles initiate on the rising edge of the input clock signal. Note that when driving SYNC with an external signal, RFREQ must still be connected to FREQ.

High-Efficiency, Current-Mode, Inverting PWM Controller

Typical Application Circuit

High-Efficiency, Current-Mode,
 Inverting PWM Controller

High-Efficiency, Current-Mode, Inverting PWM Controller

Detailed Description

The MAX1846/MAX1847 current-mode PWM controller use an inverting topology that is ideal for generating output voltages from -2 V to -200 V . Features include shutdown, adjustable internal operating frequency or synchronization to an external clock, soft-start, adjustable current limit, and a wide (+3V to +16.5 V) input range.

PWM Controller

The architecture of the MAX1846/MAX1847 currentmode PWM controller is a Bi-CMOS multi-input system that simultaneously processes the output-error signal, the current-sense signal, and a slope-compensation ramp (Functional Diagram). Slope compensation prevents subharmonic oscillation, a potential result in cur-rent-mode regulators operating at greater than 50\% duty cycle. The controller uses fixed-frequency, cur-rent-mode operation where the duty ratio is set by the input-to-output voltage ratio. The current-mode feedback loop regulates peak inductor current as a function of the output error signal.

Internal Regulator

The MAX1846/MAX1847 incorporate an internal Iowdropout regulator (LDO). This LDO has a 4.25V output and powers all MAX1846/MAX1847 functions (excluding EXT) for the primary purpose of stabilizing the performance of the IC over a wide input voltage range $(+3 \mathrm{~V}$ to $+16.5 \mathrm{~V})$. The input to this regulator is connected to IN , and the dropout voltage is typically 100 mV , so that when VIN is less than 4.35V, VL is typically VIN minus 100 mV . When the LDO is in dropout, the MAX1846/MAX1847 still operate with VIN as low as 3 V . For best performance, it is recommended to connect VL to IN when the input supply is less than 4.5 V .

Undervoltage Lockout

The MAX1846/MAX1847 have an undervoltage lockout circuit that monitors the voltage at VL. If VL falls below the UVLO threshold (2.8V typ), the control logic turns the P-channel FET off (EXT high impedance). The rest of the IC circuitry is still powered and operating. When VL increases to 60 mV above the UVLO threshold, the IC resumes operation from a start up condition (soft-start).

Soft-Start

The MAX1846/MAX1847 feature a "digital" soft-start that is preset and requires no external capacitor. Upon startup, the FB threshold decrements from the reference voltage to 0 in 64 steps over 1024 cycles of fosc or fSYNC. See the Typical Operating Characteristics for a scope picture of the soft-start operation. Soft-start is implemented: 1) when power is first applied to the IC
2) when exiting shutdown with power already applied, and 3) when exiting undervoltage lockout.

Shutdown (MAX1847 only)

The MAX1847 shuts down to reduce the supply current to $10 \mu \mathrm{~A}$ when $\overline{\mathrm{SHDN}}$ is low. In this mode, the internal reference, error amplifier, comparators, and biasing circuitry turn off. The EXT output becomes high impedance and the external pullup resistor connected to EXT pulls VEXT to V_{IN}, turning off the P-channel MOSFET. When in shutdown mode, the converter's output goes to 0 .

Frequency Synchronization

(MAX1847 only)
The MAX1847 is capable of synchronizing its switching frequency with an external clock source. Drive SYNC with a logic-level clock input signal to synchronize the MAX1847. A switching cycle starts on the rising edge of the signal applied to SYNC. Note that the frequency of the signal applied to SYNC must be higher than the default frequency set by RFREQ. This is required so that the internal clock does not start a switching cycle prematurely. If SYNC is inactive for an entire clock cycle of the internal oscillator, the internal oscillator takes over the switching operation. Choose RFREQ such that fOSC $=0.9 \times \mathrm{fSYNC}$.

EXT Polarity (MAX1847 only)
The MAX1847 features an option to utilize an N -channel MOSFET configuration, rather than the typical P-channel MOSFET configuration (Figure 1). In order to drive the different polarities of these MOSFETs, the MAX1847 is capable of reversing the phase of EXT by 180 degrees. When driving a P-channel MOSFET, connect POL to GND. When driving an N -Channel MOSFET, connect POL to VL. These POL connections ensure the proper polarity for EXT. For design guidance in regard to this application, refer to the MAX1856 data sheet

Design Procedure

Initial Specifications

In order to start the design procedure, a few parameters must be identified: the minimum input voltage expected (VIN(MIN)), the maximum input voltage expected $(\mathrm{V} \operatorname{IN}(\mathrm{MAX}))$, the desired output voltage (VOUT), and the expected maximum load current (ILOAD).

Calculate the Equivalent Load Resistance

This is a simple calculation used to shorten the verification equations:
RLOAD = VOUT / ILOAD

High-Efficiency, Current-Mode, Inverting PWM Controller

Figure 1. Using an N-Channel MOSFET (MAX1847 only)

Calculate the Duty Cycle
The duty cycle is the ratio of the on-time of the MOSFET switch to the oscillator period. This is determined by the ratio of the input voltage to the output voltage. Since the input voltage typically has a range of operation, a minimum (DMin) and maximum (DMAX) duty cycle is calculated by:

$$
\begin{aligned}
& \mathrm{D}_{\text {MIN }}=\frac{-V_{\text {OUT }}+V_{D}}{V_{\text {IN(MAX })}-V_{\text {SW }}-V_{\text {LIM }}-V_{\text {OUT }}+V_{D}} \\
& \mathrm{D}_{\text {MAX }}=\frac{-V_{\text {OUT }}+V_{D}}{V_{\text {IN(MIN })}-V_{\text {SW }}-V_{\text {LIM }}-V_{\text {OUT }}+V_{D}}
\end{aligned}
$$

where V_{D} is the forward drop across the output diode, VSW is the drop across the external FET when on, and VLIM is the current-limit threshold. To begin with, assume $V_{D}=0.5 \mathrm{~V}$ for a Schottky diode, VSW $=100 \mathrm{mV}$, and VLIM $=100 \mathrm{mV}$. Remember that Vout is negative when using this formula.

Setting the Output Voltage
The output voltage is set using two external resistors to form a resistive-divider to FB between the output and REF (refer to R1 and R2 in Figure 1). VREF is nominally
1.25 V and the regulation voltage for FB is nominally 0 . The load presented to the reference by the feedback resistors must be less than $500 \mu \mathrm{~A}$. This is to guarantee that VREF is in regulation (see Electrical Characteristics Table). Conversely, the current through the feedback resistors must be large enough so that the leakage current of the FB input (50 nA) is insignificant. Therefore, select $R 2$ so that lR2 is between $50 \mu \mathrm{~A}$ and $250 \mu \mathrm{~A}$.

$$
I_{R 2}=V_{\text {REF }} / R 2
$$

where $V_{\text {REF }}=1.25 \mathrm{~V}$. A typical value for $R 2$ is $10 \mathrm{k} \Omega$.
Once R2 is selected, calculate R1 with the following equation:
R1 = R2 x (-Vout / VREF)

Setting the Operating Frequency

The MAX1846/MAX1847 are capable of operating at switching frequencies from 100 kHz to 500 kHz . Choice of operating frequency depends on a number of factors:

1) Noise considerations may dictate setting (or synchronizing) fosc above or below a certain frequency or band of frequencies, particularly in RF applications.

High－Efficiency，Current－Mode， Inverting PWM Controller

2）Higher frequencies allow the use of smaller value （hence smaller size）inductors and capacitors．
3）Higher frequencies consume more operating power both to operate the IC and to charge and discharge the gate of the external FET．This tends to reduce the efficiency at light loads．
4）Higher frequencies may exhibit lower overall effi－ ciency due to more transition losses in the FET； however，this shortcoming can often be nullified by trading some of the inductor and capacitor size benefits for lower－resistance components．
5）High－duty－cycle applications may require lower frequencies to accommodate the controller mini－ mum off－time of $0.4 \mu \mathrm{~s}$ ．Calculate the maximum oscillator frequency with the following formula：

$$
\begin{aligned}
f_{\text {OSC(MAX })} & =\frac{V_{\text {IN(MIN })}-V_{S W}-V_{\text {LIM }}}{V_{\text {IN(MIN })}-V_{S W}-V_{\text {LIM }}-V_{\text {OUT }}+V_{D}} \\
& \times \frac{1}{\mathrm{t}_{\text {OFF(MIN })}}
\end{aligned}
$$

Remember that VOUT is negative when using this formula． The oscillator frequency is set by a resistor，RFREQ， connected from FREQ to GND．The relationship between fosc（in Hz ）and RFREQ（in Ω ）is slightly non－ linear，as illustrated in the Typical Operating Characteristics．Choose the resistor value from the graph and check the oscillator frequency using the fol－ lowing formula：

$$
f_{\text {OSC }}=\frac{1}{\left[\left(5.21 \times 10^{-7}\right)+\left(1.92 \times 10^{-11}\right) \times R_{\text {FREQ }}-\left(4.86 \times 10^{-19}\right) \times\left(R_{\text {FREQ }}\right)^{2}\right]}
$$

External Synchronization（MAX1847 only）

 The SYNC input provides external－clock synchroniza－ tion（if desired）．When SYNC is driven with an external clock，the frequency of the clock directly sets the MAX1847＇s switching frequency．A rising clock edge on SYNC is interpreted as a synchronization input．If the sync signal is lost，the internal oscillator takes over at the end of the last cycle，and the frequency is returned to the rate set by RFREQ．Choose RFREQ such that fOSC $=0.9 \times$ fSYNC．
Choosing Inductance Value

The inductance value determines the operation of the current－mode regulator．Except for low－current applica－
tions，most circuits are more efficient and economical operating in continuous mode，which refers to continu－ ous current in the inductor．In continuous mode there is a trade－off between efficiency and transient response． Higher inductance means lower inductor ripple current， lower peak current，lower switching losses，and，there－ fore，higher efficiency．Lower inductance means higher inductor ripple current and faster transient response．A reasonable compromise is to choose the ratio of induc－ tor ripple current to average continuous current at mini－ mum duty cycle to be 0．4．Calculate the inductor ripple with the following formula：

$$
\begin{aligned}
& \mathrm{I}_{\text {RIPPLE }}= \\
& \frac{0.4 \times \mathrm{I}_{\text {LOAD(MAX })} \times\left(\mathrm{V}_{\text {IN(MAX }}-V_{S W}-V_{\text {LIM }}-V_{\text {OUT }}+V_{D}\right)}{\left(V_{\text {IN(MAX }}-V_{S W}-V_{\text {LIM }}\right)}
\end{aligned}
$$

Then calculate an inductance value：

$$
L=(\mathrm{V} \operatorname{IN}(\mathrm{MAX}) / \mathrm{IRIPPLE}) \times(\mathrm{DMIN} / \mathrm{fOSC})
$$

Choose the closest standard value．Once again，remem－ ber that VOUT is negative when using this formula．

Determining Peak Inductor Current

The peak inductor current required for a particular out－ put is：
ILPEAK = ILDC + (ILPP / 2)
where ILDC is the average DC input current and ILPP is the inductor peak－to－peak ripple current．The ILDC and lLPP terms are determined as follows：

$$
\begin{aligned}
& I_{L D C}=\frac{I_{\text {LOAD }} \times\left(-V_{O U T}+V_{D}\right)}{V_{\text {IN(MIN })}-V_{S W}-V_{\text {LIM }}} \\
& I_{\text {LPP }}=\frac{\left(V_{I N(M I N)}-V_{S W}-V_{\text {LIM }}\right) \times\left(-V_{O U T}+V_{D}\right)}{L \times f_{O S C} \times\left(-V_{O U T}+V_{D}\right)}
\end{aligned}
$$

where L is the selected inductance value．The satura－ tion rating of the selected inductor should meet or exceed the calculated value for ILPEAK，although most coil types can be operated up to 20% over their satura－ tion rating without difficulty．In addition to the saturation criteria，the inductor should have as low a series resis－ tance as possible．For continuous inductor current，the power loss in the inductor resistance（PLR）is approxi－ mated by：

$$
\text { PLR } \sim(\operatorname{ILOAD} \times \text { VOUT } / \operatorname{VIN})^{2} \times R \mathrm{R}
$$

where R_{L} is the inductor series resistance．

High-Efficiency, Current-Mode, Inverting PWM Controller

Once the peak inductor current is calculated, the current sense resistor, Rcs, is determined by:

$$
\text { RCS }=85 \mathrm{mV} / \operatorname{ILPEAK}
$$

For high peak inductor currents ($>1 \mathrm{~A}$), Kelvin-sensing connections should be used to connect CS and PGND to Rcs. Connect PGND and GND together at the ground side of Rcs. A lowpass filter between Rcs and CS may be required to prevent switching noise from tripping the current-sense comparator at heavy loads. Connect a 100Ω resistor between CS and the high side of Rcs, and connect a 1000pF capacitor between CS and GND.

Checking Slope-Compensation Stability In a current-mode regulator, the cycle-by-cycle stability is dependent on slope compensation to prevent subharmonic oscillation at duty cycles greater than 50%. For the MAX1846/MAX1847, the internal slope compensation is optimized for a minimum inductor value (LMIN) with respect to duty cycle. For duty cycles greater then 50%, check stability by calculating LMIN using the following equation:

$$
\begin{aligned}
\mathrm{L}_{\mathrm{MIN}} & =\left[\left(\mathrm{V}_{\mathrm{N}(\mathrm{MIN})} \times \mathrm{R}_{\mathrm{CS}}\right) / \mathrm{M}_{\mathrm{S}}\right] \\
& \times\left[\left(2 \times \mathrm{D}_{\mathrm{MAX}}-1\right) /\left(1-\mathrm{D}_{\mathrm{MAX}}\right)\right]
\end{aligned}
$$

where $\left.\mathrm{VIN}_{\mathrm{I}} \mathrm{MIN}\right)$ is the minimum expected input voltage, M_{S} is the Slope Compensation Ramp ($41 \mathrm{mV} / \mu \mathrm{s}$) and Dmax is the maximum expected duty cycle. If LMIN is larger than L, increase the value of L to the next standard value that is larger than LMIN to ensure slope compensation stability.

Power MOSFET Selection
The MAX1846/MAX1847 drive a wide variety of P-channel power MOSFETs (PFETs). The best performance, especially with input voltages below 5 V , is achieved with low-threshold PFETs that specify on-resistance with a gate-to-source voltage (VGS) of 2.7 V or less. When selecting a PFET, key parameters include:

1) Total gate charge $\left(Q_{G}\right)$
2) Reverse transfer capacitance (Crss)
3) On-resistance (RDs(ON))
4) Maximum drain-to-source voltage (VDS(MAX))
5) Minimum threshold voltage ($\left.\mathrm{V}_{\mathrm{TH}(\mathrm{MIN})}\right)$

At high switching rates, dynamic characteristics (parameters 1 and 2 above) that predict switching losses may have more impact on efficiency than $\operatorname{RDS}(O N)$, which predicts DC losses. QG includes all capacitance
associated with charging the gate. In addition, this parameter helps predict the current needed to drive the gate at the selected operating frequency. The power MOSFET in an inverting converter must have a high enough voltage rating to handle the input voltage plus the magnitude of the output voltage and any spikes induced by leakage inductance.
Choose RDS(ON)(MAX) specified at $\mathrm{VGS}_{\mathrm{GS}}$ < $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ to be one to two times Rcs. Verify that $\operatorname{VIN(MAX)}<\mathrm{VGS}_{\mathrm{G}}(\mathrm{MAX})$ and $V_{D S}(\operatorname{MAX})>\operatorname{VIN}($ MAX $) ~-~ V O U T ~+~ V D . ~ C h o o s e ~ t h e ~ r i s e-~$ and fall-times (tR, tF) to be less than 50ns.

Output Capacitor Selection

The output capacitor (COUT) does all the filtering in an inverting converter. The output ripple is created by the variations in the charge stored in the output capacitor with each pulse and the voltage drop across the capacitor's equivalent series resistance (ESR) caused by the current into and out of the capacitor. There are two properties of the output capacitor that affect ripple voltage: the capacitance value, and the capacitor's ESR. The output ripple due to the output capacitor's value is given by:

$$
\text { VRIPPLE-C }=(\text { ILOAD } \times \text { DMAX } \times \text { TOSC }) / \text { COUT }
$$

The output ripple due to the output capacitor's ESR is given by:

$$
V_{\text {RIPPLE-R }}=\operatorname{ILPP} \times \text { RESR }
$$

These two ripple voltages are additive and the total output ripple is:

$$
\text { VRIPPLE-T }=\text { VRIPPLE-C }+ \text { VRIPPLE-R }
$$

The ESR-induced ripple usually dominates this last equation, so typically output capacitor selection is based mostly upon the capacitor's ESR, voltage rating, and ripple current rating. Use the following formula to determine the maximum ESR for a desired output ripple voltage (VRIPPLE-D):
RESR = VRIPPLE-D / ILPP

Select a capacitor with ESR rating less than RESR. The value of this capacitor is highly dependent on dielectric type, package size, and voltage rating. In general, when choosing a capacitor, it is recommended to use low-ESR capacitor types such as ceramic, organic, or tantalum capacitors. Ensure that the selected capacitor has sufficient margin to safely handle the maximum ripple current (ILPP) and the maximum output voltage.

Choosing Compensation Components

 The MAX1846/MAX1847 are externally loop-compensated devices. This provides flexibility in designs to accommodate a variety of applications. Proper com-
High-Efficiency, Current-Mode, Inverting PWM Controller

pensation of the control loop is important to prevent excessive output ripple and poor efficiency caused by instability. The goal of compensation is to cancel unwanted poles and zeros in the DC-DC converter's transfer function created by the power-switching and filter elements. More precisely, the objective of compensation is to ensure stability by ensuring that the DCDC converter's phase shift is less than 180° by a safe margin, at the frequency where the loop gain falls below unity. One method for ensuring adequate phase margin is to introduce corresponding zeros and poles in the feedback network to approximate a single-pole response with a $-20 \mathrm{~dB} /$ decade slope all the way to unity-gain crossover.

Calculating Poles and Zeros

The MAX1846/MAX1847 current-mode architecture takes the double pole caused by the inductor and output capacitor and shifts one of these poles to a much higher frequency. This makes loop compensation easier. To compensate these devices, we must know the center frequencies of the right-half plane zero (ZRHP) and the higher frequency pole (poutz). Calculate the ZRHP frequency with the following formula:

$$
\mathrm{ZRHP}=\frac{-\left[\left(1-\mathrm{D}_{\mathrm{MAX}}\right)^{2} \times\left(\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{R}_{\mathrm{LOAD}}\right]}{\left(2 \pi \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{L}\right)}
$$

The calculations for pout2 are very complex. For most applications where Vout does not exceed -48V (in a negative sense), the pout2 will not be lower than 1/8th of the oscillator frequency and is generally at a higher frequency than zRHP. Therefore:

$$
\text { POUT2 } \geq 0.125 \times \text { fosc }
$$

A pole is created by the output capacitor and the load resistance. This pole must also be compensated and its center frequency is given by the formula:

$$
\text { POUT1 }=1 /(2 \pi \times \text { RLOAD } \times \text { COUT })
$$

Finally, there is a zero introduced by the ESR of the output capacitor. This zero is determined from the following equation:

$$
\text { ZESR }=1 /(2 \pi \times \text { COUT } \times \text { RESR })
$$

Calculating the Required Pole Frequency
To ensure stability of the MAX1846/MAX1847, the introduced pole (PDOM) by the compensation network must roll-off the error amplifier gain to 1 before ZRHP or POUT2 occurs. First calculate the DC open-loop gain to determine the frequency of the pole to introduce.

$$
A_{D C}=\frac{\left[\begin{array}{l}
G_{M} \times R_{O} \times\left(1-D_{M A X}\right)^{2} \times\left(V_{I N(M I N)}-V_{O U T}\right) \\
\times R_{\text {LOAD }}
\end{array}\right]}{B \times\left[\begin{array}{l}
\left(R_{C S} \times V_{\operatorname{VIN(MIN)}}\right)+T_{O S C}\left(1-D_{M A X}\right) \\
\times R_{\text {LOAD }}\left(\frac{V_{I N(M I N)}}{2 L} \times R_{C S}+M_{S 1}\right)
\end{array}\right]}
$$

where:
B is the feedback divider attenuation factor $=$ (-Vout / Vref),
G_{M} is the error amplifier transconductance $=$ $400 \mu \mathrm{~A} / \mathrm{V}$,
Ro is the error amplifier output resistance $=3 \mathrm{M} \Omega$,
Ms1 is the slope compensation factor $=$ [(1.636A / $\mu \mathrm{s}) \times$ Rcs],
Rcs is the selected current sense resistor, L is the selected inductance value
If ZRHP is at a lower frequency than poUT2, the required dominant pole frequency is given by:
PDOM = ZRHP / ADC

Otherwise the required dominant pole frequency is:

$$
\text { pDOM }=\text { pOUT2 } / \text { ADC }
$$

Determining the Compensation Component Values

Using PDOM, calculate the compensation capacitor required:

$$
\text { CCOMP }=1 /(2 \pi \times \text { Ro } \times \text { pDOM })
$$

Select the next largest standard value of capacitor and then calculate the compensation resistor required to cancel out the output-capacitor-induced pole (poUT1) determined previously. A zero is needed to cancel the output-induced pole and the frequency of this zero must equal poUT1. Therefore:

$$
\begin{gathered}
\text { zCOMP }=\text { pOUT1 } \\
\text { RCOMP }=\text { RLOAD } \times \text { COUT } / \text { CCOMP }
\end{gathered}
$$

Choose the nearest lower standard value of the resistor. Now check the final values selected for the compensation components:

$$
\mathrm{pCOMP}=1 /\left[2 \pi \times \mathrm{CCOMP} \times\left(\mathrm{RO}_{\mathrm{O}}+\mathrm{RCOMP}^{2}\right)\right]
$$

In order for pCOMP to compensate the loop, the openloop gain must reach unity at a lower frequency than the right-half-plane zero or the second output pole, whichever is lower in frequency. If the second output pole and the right-half-plane zero are close together in frequency, the higher resulting phase shift at unity gain

High-Efficiency, Current-Mode, Inverting PWM Controller

may require a larger compensation capacitor than calculated. It might take more than a couple of iterations to obtain a suitable combination.
Finally, the zero introduced by the output capacitor's ESR must be compensated. This is accomplished by placing a capacitor between REF and FB creating a pole directly in the feedback loop. Calculate the value of this capacitor using the frequency of ZESR and the selected feedback resistor values with the formula:

$$
C_{F B}=R_{E S R} \times C_{O U T} \times \frac{R_{1}+R_{2}}{R_{1} \times R_{2}}
$$

Applications Information

Maximum Output Power

The maximum output power that the MAX1846/MAX1847 can provide depends on the maximum input power available and the circuit's efficiency:

$$
\text { POUT }(\mathrm{MAX})=\text { Efficiency } \times \operatorname{PIN}(\mathrm{MAX})
$$

Furthermore, the efficiency and input power are both functions of component selection. Efficiency losses can be divided into three categories: 1) resistive losses across the inductor, MOSFET on-resistance, currentsense resistor, and the ESR of the input and output capacitors; 2) switching losses due to the MOSFET's transition region, and charging the MOSFET's gate capacitance; and 3) inductor core losses. Typically 80% efficiency can be assumed for initial calculations. The required input power depends on the inductor current limit, input voltage, output voltage, output current, inductor value, and the switching frequency. The maximum output power is approximated by the following formula:

$$
\begin{aligned}
& \text { PMAX }=[\text { VIN }-(\text { VLIM }+\operatorname{ILIM} \times \operatorname{RDS}(O N))] \times \operatorname{ILIM} \times \\
& \text { [1-(LIR / 2)] x [(-VOUT + VD) / (VIN - VSW - VLIM } \\
& \text { - VOUT + VD)] }
\end{aligned}
$$

where ILIM is the peak current limit and LIR is the inductor current-ripple ratio and is calculated by:
LIR = ILPP / ILDC

Again, remember that Vout for the MAX1846/ MAX1847 is negative.

Diode Selection

The MAX1846/MAX1847's high-switching frequency demands a high-speed rectifier. Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. Ensure that the diode's average current rating exceeds the peak inductor current by using the diode manufacturer's data. Additionally, the diode's reverse breakdown voltage must
exceed the potential difference between Vout and the input voltage plus the leakage inductance spikes. For high output voltages (-50V or more), Schottky diodes may not be practical because of this voltage requirement. In these cases, use an ultrafast recovery diode with adequate reverse-breakdown voltage.

Input Filter Capacitor

The input capacitor (CIN) in inverting converter designs reduces the current peaks drawn from the input supply and reduces noise injection. The source impedance of the input supply largely determines the value of CIN. High source impedance requires high input capacitance, particularly as the input voltage falls. Since inverting converters act as "constant-power" loads to their input supply, input current rises as the input voltage falls. Consequently, in low-input-voltage designs, increasing CIN and/or lowering its ESR can add as much as 5\% to the conversion efficiency.

Bypass Capacitor

In addition to CIN and CoUT, other ceramic bypass capacitors are required with the MAX1846/MAX1847. Bypass REF to GND with a $0.1 \mu \mathrm{~F}$ or larger capacitor. Bypass VL to GND with a 0.47μ F or larger capacitor. All bypass capacitors should be located as close to their respective pins as possible.

PC Board Layout Guidelines
Good PC board layout and routing are required in high-frequency-switching power supplies to achieve good regulation, high efficiency, and stability. It is strongly recommended that the evaluation kit PC board layouts be followed as closely as possible. Place power components as close together as possible, keeping their traces short, direct, and wide. Avoid interconnecting the ground pins of the power components using vias through an internal ground plane. Instead, keep the power components close together and route them in a "star" ground configuration using component-side copper, then connect the star ground to internal ground using multiple vias.

Main Application Circuits

The MAX1846/MAX1847 are extremely versatile devices. Figure 2 shows a generic schematic of the MAX1846. Table 1 lists component values for several typical applications. These component values also apply to the MAX1847. The first two applications are featured in the MAX1846/MAX1847 EV Kit.

High－Efficiency，Current－Mode， Inverting PWM Controller

NOTE：APPLICATIONS A \＆B USE POS CAPACITORS．APPLICATIONS C \＆D USE ALUMINUM ELECTROLYTIC CAPACITORS．

Figure 2．MAX1846 Main Application Circuit

Table 1．Component List for Main Application Circuits

CIRCUIT ID	A	B	C	D
Input（V）	12	3 to 5.5	12	12
Output（V）	－5	－12	－48	－72
Output（A）	2	0.4	0.1	0.1
CCOMP（ $\mu \mathrm{F}$ ）	0.047	0.22	0.068	0.1
$\mathrm{Cln}(\mu \mathrm{F})$	3×10	3×22	10	10
Cout（ $\mu \mathrm{F}$ ）	2×100	2×47	47	33
CFB（pF）	390	1200	1800	1800
R1（k $\boldsymbol{\text { ）}}$（1\％）	40.2	95.3	383	576
R2（k 2 ）（1\％）	10	10	10	10
RCOMP（k Ω ）	8.2	10	150	1800
$\operatorname{RCS}(\Omega)$	0.02	0.02	0.05	0.05
RFREQ（k Ω ）	150	150	150	150
D1	CMSH5－40	CMSH5－40	CMR1U－02	CMR1U－02
L1（ $\mu \mathrm{H}$ ）	10	10	47	82
P1	FDS6685	FDS6375	IRFR5410	IRFR5410

High-Efficiency, Current-Mode,
 Inverting PWM Controller

Component Suppliers

SUPPLIER	COMPONENT	PHONE	wEBSITE
AVX	Capacitors	$803-946-0690$	www.avxcorp.com
Central Semiconductor	Diodes	$516-435-1110$	www.centralsemi.com
Coilcraft	Inductors	$847-639-6400$	www.coilcraft.com
Dale	Resistors	$402-564-3131$	www.vishay.com/brands/dale/main.html
Fairchild	MOSFETs	$408-721-2181$	www.fairchildsemi.com
International Rectifier	MOSFETs	$310-322-3331$	www.irf.com
IRC	Resistors	$512-992-7900$	www.irctt.com
Kemet	Capacitors	$864-963-6300$	www.kemet.com
On Semiconductor	MOSFETs, Diodes	$602-303-5454$	www.onsemi.com
Panasonic	Capacitors, Resistors	$201-348-7522$	www.panasonic.com
Sanyo	Capacitors	$619-661-6835$	www.secc.co.jp
Siliconix	MOSFETs	$408-988-8000$	www.siliconix.com
Sprague	Capacitors	$603-224-1961$	www.vishay.com/brands/sprague/main.html
Sumida	Inductors	$847-956-0666$	www.remtechcorp.com
Vitramon	Resistors	$203-268-6261$	www.vishay.com/brands/vitramon/main.html

Note: Please indicate that you are using the MAX1846/MAX1847 when contacting these component suppliers.

Pin Configurations

High-Efficiency, Current-Mode, Inverting PWM Controller

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO187.
KVI IXI/VI

High-Efficiency, Current-Mode, Inverting PWM Controller

